Ejercicio 1
\[- (x - 1) = - ( -x + 7 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 2
\[- (-x + 6) = ( x - 6 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 3
\[- (2x - 3) = ( -3x - 0 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 4
\[4 ( 3x - 1 ) = -2 ( -2x - 3 ) + 14\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 5
\[-3 ( 3x + 5 ) = 3 ( -x - 1 ) + 6\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 6
\[-4 ( -3x + 6 ) = -3 ( -2x + 6 ) - 12\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 7
\[\frac{-1}{5} ( \frac{-1}{3}x - \frac{5}{2} ) = \frac{5}{2} ( -x - 1 ) - \frac{17}{20}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 8
\[-2 ( \frac{-1}{4}x + 1 ) = \frac{-5}{3} ( \frac{-2}{3}x + \frac{1}{2} ) - \frac{41}{54}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 9
\[1 ( \frac{-3}{5}x - \frac{4}{3} ) = \frac{1}{5} ( \frac{-1}{3}x + 1 ) - \frac{67}{75}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]